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ABSTRACT

Outsourcing data to cloud storage has become popular. Example systems such as Google

Drive, Amazon S3 and Microsoft Azure are affordable and convenient, and provide scalable

storage space. However, since the data management is left to third party, users no longer

have physical control of their sensitive data, which raises new challenges in terms of data

privacy. Data encryption provides confidentiality, but encryption alone is not enough since

information may be leaked through the pattern in which users access the data. In this thesis, we

implemented a Customized ORAM(C-ORAM) system that allows oblivious access to remotely-

stored data in multi-user scenario. Experiments have shown that C-ORAM can effectively

protect user’s privacy as well as achieve low communication overhead at individual users.
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CHAPTER 1. INTRODUCTION

The popularity of storing data in the “cloud” has increased in recent past because of its

cost effectiveness compared to traditional storage systems. In cloud environment, the clients

pay only for the resources that they use, and they are more reliable due to the redundancy

provided by replications presented in the cloud server. When outsourcing sensitive data such

as financial and health records, it becomes a problem of data privacy as users are giving control

of their data to third party where in this case it is the cloud provider. The primary way to

maintain confidentiality of user’s data is to encrypt them using a key, which is only known to

the particular user. However, data encryption does not fully guarantee the privacy since the

patterns of data access could leak considerable information about the stored data.

From clients’ data access patterns, a server can monitor their queries and perform it’s own

traffic analysis.Remote server can learn the regular accessing patterns of data, and try to relate

it to other client information gained by the third party channels. For example, suppose there

is always certain stock exchange action take place after query sequence of q1, q2 and q3 from

the client. In this case, a curious server can learn about the content of the queries. It can also

predict what will happen next when similar sequence of queries appear, even though the data

that query is encrypted [Pinkas et. al. 1].

Furthermore, it is also possible to analyze the significance of different areas in the storage,

by keeping track of how frequent the same data items access by the client. A malicious server

with substantial but limited power, may try apply it’s resources to decrypt only the data items

which are frequently accessed by the user.

In addition, the server can draw conclusions about associations between queries by consid-

ering the users’ data access patterns. For an example, suppose a company outsources its data

and the employees are accessing those data time to time. By observing and comparing the data
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access patterns of the employees, the storage provider can decide what kind of access policy

that company follows since in general, higher privilege users have access to larger portion of

data than the lower privilege users.

In the context of hiding users’ data access patterns from the curious server, Goldreich and

Ostrovsky introduced Oblivious RAM (ORAM) architecture [2] which uses repeated encryption

and shuffling of outsourced data. The basic idea of hierarchical solution proposed by Ostrovsky

can be stated like this: there are sequences of layers which are filled by the data elements at

each querying process, and smaller layers are shuffled into larger layers as they fill up. It is

required that shuffling also need to be oblivious to the untrusted party. In order to protect

the data content, a private key encryption is used when the retrived elements are written back

to untrusted RAM. After that, many ORAM constructions have been proposed to protect

the users’ data access patterns privacy with some restrictions [2-6]. One of the fundamental

restrictions in most of such ORAMs, is the assumption of single user access to the remote

storage. However, in reality there can be multiple users who access to the remote storage

simultaneously.

In C-ORAM proposed by Zhang et. al. [7] there are two entities in client side:multiple

users who trust each other, and shared agent. In general we can assume they belong to same

organization. C-ORAM support two kind of operations, data query and data shuffling. Query-

ing a data item from remote storage is done by the users while shuffling done by the shared

agent.The motivation to develope a system like this is to detach the overhead incured in shuffling

phase from the client.The efficiency of an ORAM is measured by amount of local storage, and

amount of communication overhead for querying and the shuffling. Compared to the single-

user ORAM with the best-known performance [6] C-ORAM archive a lower communication

overhead per query by the user O(logNloglogN), a higher communication overhead for data

shuffling O(log3NloglogN) which is handled by shared agent, and a moderately increased local

cache at the user O(logN log logN).

In this study, we implement C-ORAM which works with a FUSE-based distributed file

system. Experimental results show that users access pattern can be preserved in that there

is no difference between querying one same element and randomly picked element for multiple
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times. The overhead results for querying and shuffling measured from the evaluation process

have close match to the theoretical results.

The rest of this thesis is organized as follows: In Chapter 2, related works are presented.

Chapter 3 outlines the problem statement in more detailed. Chapter 4 describes the design of

C-ORAM scheme and Chapter 5 includes the detailed implementation of C-ORAM. Chapter 6

includes the results of evaluation and discussion. Finally, Chapter 7 concludes the thesis with

some future work suggestions.
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CHAPTER 2. RELATED WORK

2.1 Oblivious RAM

Oblivious RAM was first examined as theoretical method by Goldreich and Ostrovsky

[8,9,10] for protecting a software from piracy. In that context the processor is trusted while the

memory is not. Goldreich and Ostrovsky in [9] prove that oblivious RAM (ORAM) simulation

using an outsourced data requires an overhead of at least logN, for a RAM memory of size N.

When client side has only a constant size storage, they show how client capable of achieving

an overhead of O(
√
NlogN), using a scheme called the “square-root” solution, and with O(N)

storage at server. After that with a more complex scheme, they also show how client capable

of achieving an overhead of O(log3N) with O(NlogN) storage at the server, using a scheme

called the “hierarchical” solution. Apart from suggesting a hierarchical solution with O(log3N)

amortized cost, Goldreich and Ostrovsky [9] also proposed an ORAM scheme with lower bound

amortized cost for client at least O(logN) (for ORAM capacity of N). In 2010, Beame and

Machmouchi [11] improved the lower bound to O(logNloglogN).

The application of above mentioned ORAM solutions were not that straight forward. Be-

cause those approaches contain several complications and hidden constant factors that make

these solutions not practical for real-world use in the context of privacy protection in outsourced

data management. Some other works have been done base on Goldreich and Ostrovsky hier-

archical solution which can be denoted as index based and hash based ORAM schemes by

considering their lookup mechanisms.

As an index based ORAM, Stefanov et al. [12] proposed an ORAM scheme which has

reduced worst-case bound for data access. Because of the lower overhead than theoretical

ORAMs this is more suitable for real world application. With the ORAM scheme they show
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that client can achieve an amortized overhead of O(logn) and worst-case performance O(
√
N),

with O(εN) storage on the client, for a constant 0 < ε < 1. It is also able to achieve amortized

overhead of O(logN) and similar worst-case performance, with a client side storage of O(
√
N).

The scheme of [13] provides a tree-based construction that uses poly-logarithmic O(NlogN)

server storage and incurs O(log2N) overhead on each access when the client has access to

O(
√
N) local storage.

Another index based ORAM (Path-ORAM)[14] proposed makes O(logN) accesses to the

server. It is performance wise better than all other ORAMs which are index based. It uses

a position map and stash which are both stored at the client side. The size of position map

used is n while the position map is size of log(N). With O(logN) client side Path-ORAM

achieves O(log2N) amortized overhead. The oblivious simulations described above consider a

single-client scenario where all accesses, including read-only accesses, are processed sequentially.

Extending these solutions to support parallel access is important if we consider multi user

scenario. The works of Stefanov and Shi [15] and Williams et al. [16] allow parallel access.

The clients access oblivious storage of [15] via a load balancer that is responsible for scheduling

client requests.

As a hash based ORAM, Williams and Sion[17] proposed one with a constant overhead by

using computation power of the server. With O(
√
N) client side storage they achieved an ex-

pected amortized time overhead of O(log2N). Williams and Sion propose another construction

with O(
√
N) client-side storage, that achieves O(logNloglogN) amortized cost [18].Pinkas and

Reinman proposed a hash based ORAM [1] construction that achieves O(logN2) overhead with

O(1) client-side storage.Goodrich and Mitzenmacher [19] show that overhead of O(log2N) in

an ORAM simulation can be achieved , with high probability, for a client with constant sized

local memory, and O(logN), for a client with O(N ε) memory, for a constant ε > 0. Kushilevitz

et al. [20] also show that one can achieve an overhead of O(log2N/loglogN) in an ORAM

simulation, with high probability, for a client with constant-sized local memory.
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CHAPTER 3. PROBLEM STATEMENT

3.1 System Model

As shown in Figure 3.1, multiple users, who trust each other, share N data items, which are

exported to an un-trusted remote storage server. The users share a trusted local agent, which

has limited storage resources(Figure 3.1). The ORAM system involves two types of operations:

data query and data shuffling. A user can query the remote storage server by sending requests

directly to the server and processing replies from the server; the shared agent can perform data

shuffling for the users.

Figure 3.1 C-ORAM Design

3.1.1 Definition of data Item

Let Fp be a finite field of p distinct elements, where p is a large prime number. Let Gp be

a multiplicative, cyclic group with also p distinct elements. Hence, for any element g ∈ Gp,

elements g0, g1, g2, ..., gp−1 should all belong to G.

Each data item, denoted as Di, consists of two components: a unique data ID and the

data content that is a sequence of elements of Gp. As the operations on each element of the
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sequence are the same, we focus our study on the operations on a single element in this work.

In practice, operations on a realistic data content are simply a sequence of operations on each

element of the data content.

For the rest of this work, each data item Di is represented as (gi, di), where gi ∈ Gp is the

data ID and di ∈ Gp is the data content.

3.1.2 Basic functionalities provided by C-ORAM

From the viewpoint of client side:

• read(data, pos) to read data at physical address pos.

• write(data, pos) to write data from physical address pos.

From the viewpoint of server side:

• store(data, pos) to store data at physical address pos(write).

• fetch(pos) to retrieve data from physical address pos(read).

3.2 Threat Model

In the threat model several assumptions are made. First, the users are trusted. The

keys, used for encryption, exchange between the users are considered to be secure. Second,

communication channel between users and the server is secure. Techniques such as SSL [Freier

et al 21] can effectively achieve this. Third, the server is assumed to be curious but not

malicious. That means server do whatever the operations mentioned in 3.1 correctly on behalf

of the client, but at the same time it may try to figure out the pattern in which client access

the data. This work follows standard security definition of ORAM scheme. According to the

definition, ORAM system is considered secure if the server cannot pick up anything about the

user’s data access pattern which is formally defined in[12] as:
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Definition: Let −→y := ((op1, u1, data1), (op2, u2, data2), ..., (opM , uM , dataM )) denote a data

request sequence of length M , where each opi denotes a read(ui) or a write(ui; data) operation.

Specifically, ui denotes the identifier of the block being read or written, and datai denotes the

data being written. Let A(−→y ) denote the (possibly randomized) sequence of accesses to the

remote storage given the sequence of data requests −→y . An O-RAM construction is said to be

secure if for any two data request sequences −→y and −→z of the same length, their access patterns

A(−→y ) and A(−→z ) are computationally indistinguishable by anyone but the client.
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CHAPTER 4. SYSTEM DESIGN

4.1 Overview

C-ORAM differs from previously introduced bucket ORAM schemes mainly due to the

way how it selects the buckets. A hash function associated with each layer select two possible

locations for a given data item. The “locate” operation of data item into bucket is probabilistic,

which means data items are always inserted into the bucket with less number of items. This

guarantees there is less chance in overflowing a bucket. Following sections present system

initialization, data query, uploading and shuffling which are the three phases of operations in

C-ORAM(Figure 4.2)

4.2 System Initialization

C-ORAM organizes the storage as a hierarchy of buckets with the following properties;

• T + 1 layers, where T = [logN − log(logNloglogN)]− 1.

• φl buckets in each layer, where φl = 2l+1logNloglogN . Bottom layer of the hierarchy

(LayerT ) with at least N buckets.

• Public hash function Hl for each layer, which maps each element of group Gp to two

integers uniformly at random between 0 and φl−1.

• 4loglogN data items in each bucket.

• A counter, which keep track of the elements in each bucket.
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At system initialization, the user is preloaded with two keys x(l) and y(l) for each layer l.

x(l) is for encrypting data id; y(l) is for encrypting data content. Initially, the user encrypts

and exports all N data items to the bottom layer (T) of storage hierarchy at storage server. It

is done by computing g
x(T )
i , d

y(T )
i for each data item i and exporting to one of the two buckets

generated by the hash function associated with layer T.

4.3 Data Query

To query a data item, C-ORAM executes the data query phase in iterations for each each

nonempty layerl of the storage hierarchy from the top layerl = 0 to the bottom layer l = T .

To query an item Di = (gi, di) iteration of 6 steps are carried out.

• Step1: The user computes the encrypted ID g
x(l)
i

• Step2: The user computes the positions pos0 and pos1 of the buckets that may contain

the desired data item (pos0, pos1) ← Hl(g
x(l)
i )

• Step3: The user retrieve bitmap of the layers which indicate whether a bucket is empty

or not. If the position need to query is empty, user pick non-empty bucket from that

layer.

• Step4: Bucket request. If the bucket Di has already been found at a layer higher than

l,then from following layers user randomly picks a nonempty positions. Otherwise user

picks two non-empty buckets that computed from hash function.

• Step5: Storage server returns all the encrypted data items at the requested buckets

directly to the user.

• Step6: User uses keys x(l) and y(l) to decrypt ID and content of return data. If desired

item found, perform necessary action to the data content; otherwise, the data item is

stored temporarily in a local cache at the user.
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4.4 Data Upload

After all nonempty layers have been queried and the desired data item has been accessed,

all the returned data items are re-encrypted and then uploaded to the storage server. The

user picks a new pair of keys x(l) and y(l) randomly and re-encrypts each returned data item

with these keys. Then, the re-encrypted data items are uploaded in an arbitrary order to a

temporary shuffling buffer at the storage server.

4.5 Data Shuffling

Data shuffling is done as shown in Figure 4.1.

Figure 4.1 Algorithm 1 : Data Shuffling in C-ORAM [Zhang et. al. 7]

[S1] Determine the layer for shuffling. As a rule, shuffling should be performed for layer



www.manaraa.com

12

ls > 0 only if

(i) the number of data items in the shuffling buffer and at layers 0, ..., ls−1 is greater than

or equal to the total number of buckets at layer ls−1, and

(ii) the number of data items in the shuffling buffer and at layers 0, ..., ls is less than the

total number of buckets at layer ls.

[S2] All data items at layers 0, ..., ls update such that the ID of each data item becomes

encrypted by x(ls) and the content of each data item becomes encrypted by y(ls).

First download all data items, encrypt with users private key and upload the new items

back to shuffling buffer. The new data items will be as [D′i = (g
x(l)
i , d

x(l)
i )]

[S3] For the |S| data items stored on the shuffling buffer, the user performs data-oblivious

sorting, based on the new data ID.

[S4] After the end of data shuffling, the user further scans all data in the data buffer to

remove the private-key encryption.

[S5] Storage server moves the data items at the shuffling buffer to the buckets at layer ls

using logN random hash functions Hθ
ls

(g
x(ls)
i ) where θε {1, ..., logN}.
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Figure 4.2 Three phases of operations in C-ORAM [Zhang et. al. 7]
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CHAPTER 5. IMPLEMENTATION

We implemented the C-ORAM in a user-space distributed file system. With the distributed

file system, we can make it easy for users to access and manage files which are physically

distributed across various areas of the disk, or across a network which may be multiple disks

or multiple computer systems.

5.1 FUSE

Our user-space distributed system is built based on FUSE(File System in User Space).

FUSE is an operating system mechanism for Unix-like computer operating systems that lets

non-privileged users create their own file systems without editing kernel code. This is achieved

by running file system code in user space while the FUSE module provides a “bridge” to the

actual kernel interfaces.

Figure 5.1 Path of a filesystem call [Szeredi et. al. 22]

FUSE provide simple more uniform API function to interact with file system (Table 5.1).Be-
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cause of the file system is running in the user space it is easy to debug and failures will not

result in crashing the machine like kernel space file systems.

Table 5.1 API Functions

filel directory

create mknod mkdir

remove unlink rmdir

read read readdir

write write

misc open, truncate

5.1.1 FUSE Basic Functions

According to FUSE documentation [23], many FUSE functions provide two ways to identify

the file being operated. The default option that always available is the “path” argument,

which is the full pathname (relative to the file system root) of the file in request. However,

due to the expensiveness of pathname lookup, FUSE sometimes provides “file handle” in the

“fuse file info” structure as alternative option.

When using FUSE to implement a new file system, the first step is to set the fields in

open, create, and opendir functions so that the other functions can use them. Although, the

file handle in new FUSE file system implementation is a pointer to a useful data structure,

it can be used as either an index into an array or a hash key, or anything else that is useful.

Following functions are some of the key function need to be modified when implementing a new

file system using FUSE.

getattr(constchar ∗ path, structstat ∗ stbuf)

This function gets called every time whether the operation is for directory or a file. Therefore

it needs to be implemented first. For the given pathname, this fills in the elements of the “stat”

structure.

readdir(constchar∗path, void∗buf, fuse fill dir tfiller, off toffset, structfuse file info∗

fi)
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FUSE provides a mechanism to store the entries in a directory structure and the basic

mechanism is the creation of data and calling a FUSE-supplied function to place it back in the

structure.

The filter() is one of the function called by the readdir(). The goal of this function is to

insert directory entries into the directory structure which is called as buf.filler(). The function

prototype is given as:

intfuse fill dir t(void ∗ buf, constchar ∗ name, conststructstat ∗ stbuf, off toff);

It is important to note that the readdir() uses filler() in a simple way as possible to just

copy the related directorys filename into the mounted directory.

open(constchar ∗ path, structfuse file info ∗ fi)

This uses to open a file. To handle the files need to allocate any necessary structures need

to set the path using fi→fh which is described as absolute path above. Moreover, fi includes

some additional fields that might be useful to an advanced files system.

read(constchar ∗ path, char ∗ buf, size tsize, off toffset, structfuse file info ∗ fi)

This function first fill the buffer buf with the size(in bytes) of the given files and the

beginning of offset(in bytes) to the file. Then, it returns either the number of bytes being

transferred or 0 if the offset was at/beyond the end of the file. This function is required for

any kind of filesystem as reading and writing are essential file opearations.

release(constchar ∗ path, structfuse file info ∗ fi)

After FUSE completed all the operations with the given file, the function release() is called

in order to free any temporarily allocated data structures. There exists one release per open.

Therefore, if some function carried out at the open time of the file, by the release time, operation

needs to be completed.

By default, FUSE is multithreaded. That is useful when there are multiple clients like
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in our ORAM scheme.Multithreading lets one client to proceed even if other client stop the

communication. However there are also drawbacks of this.One is, it introduces the possibility

of race conditions. Also it makes debugging harder.

5.2 Overview of Implementation

To implement single virtual user (client) and remote storage (server) socket program which

communication over the network in TCP/IP model is used (Figure 5.2). When system starts

single connection between client and server establish and stay as long as client disconnect from

the system.

Figure 5.2 Implemented model structure

Following sections talks about the interaction with fuse, data structures used, querying,

shuffling and the communication between client and the storage.

5.3 Interaction with the fuse

Modifications to basic functions of FUSE mentioned in section 5.1 are done in the imple-

mentation in order to carry out the query process of the C-ORAM scheme. Query process

get executed at the cus open() shown in Figure 5.3 which eventually result in shuffling process

mentioned in the latter part of this section.
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Figure 5.3 Interaction with FUSE by new file system

5.4 Data Structures

According to design, data items fall into buckets generated by hash function and there is a

limit of items IDs that a bucket can hold. To facilitate this architecture layers implemented as

linked list of buckets nodes (Bucket) and for each layer starting bucket and number of buckets

stored at a separate structure called Layer.

Figure 5.4 Data Structures

In order to find particular data ID falls into which bucket MD5 hash function is used as

shown in Figure 5.5. The encryption and decryption operations used in the implementation,

all are integer operations which are described by the system design in the chapter 3.
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Figure 5.5 Function: find target bucket position

5.5 Query

In the implementation query function is called at fuse open file command. Then from each

layer buckets are queried. If the condition for shuffling is triggered at data uploading then

shuffling is done which include downloading data from layers, re-encryption, oblivious sort and

upload back to targeted layer. All these operations carried out via the socket established at

the beginning of fuse execution.

Query function consists of downloading all buckets from layer0 and downloading two bucket

from each non empty subsequent layers which generated by our hash function associated with

each layer. data id takes as the input to the query function. To download all the items in

particular layer, first ids stored at that layer need to be find. For that down layer function is

called by passing starting bucket of that layer. This function stores all ids (which are references

to actual files) to an array and return to query function. Then query function will query one

by one id from remote storage.
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Figure 5.6 Function : query id

To query all the items in one of the two positions generated by hash function query id

function is used. If particular bucket selected in a layer is empty then random bucket queried

from that layer. This function takes xkey associated with layer in addition to id in order to

compute bucket position by calling find target bucket position. This also returns all ids as

array to query function which eventually gets queried from remote storage. After querying ids

on bucket, that bucket needs to be emptied.
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Figure 5.7 Function : query
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5.6 Shuffling

Shuffling consist of several steps as shown in shuffling Algorithm1. At the time of data

uploading, if total of items in shuffling buffer and layer0 exceeds number of buckets in layer0

shuffling is triggered. It is done by keeping track of the number of element get queried at query

phase and compare it with number of buckets at layer0 for given N .

If shuffling is needed, next step is finding to which layer shuffled data can be inserted. For

that each layers item count is taken and check whether it can hold all items from layers above

that (including the items in shuffling buffer). After that downloading and uploading take place

via the socket connection established at the beginning. During the process re-encryption and

sorting take place in order to make shuffling oblivious to storage server.
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Figure 5.8 Function : shuffle
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5.7 Sort

For oblivious sort considering limited client space available batchers sort is used. Figure

5.9 shows how pair wise compare and exchange works in batchers sort for 8 elements.

Figure 5.9 Pair-wise compare and exchange of eight elements

By comparing odd and even positions in the list that need to be sorted, batchers sort makes

half of elements in list to be in ascending order while rest of the elements in descending order

as shown in example in Figure 5.10.

Figure 5.10 Intermediate step in Batchers sort of eight elements

Then compare-and-exchange moves smaller numbers of each pair to left and larger numbers

of pair to right recursively to get the sorted list. Implementation of batchers sort algorithm

is shown in following Figures 5.11, 5.12 and 5.13 as a whole. From the algorithm comparison

part is carried by the client side.
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Figure 5.11 Function : compare

Figure 5.12 Function : merge

Figure 5.13 Function : sort
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5.8 Communication

Communication process between client and server take place is shown Figure 5.14. Here

read() and write() operations are receiving and sending out the items between client and server.

In the implementation single thread is used assuming communication is serialized which mean

at a given time only one of sending or receiving operations will happen. The connection

established by the client with the server eventually ends when client close the connection.

Figure 5.14 Communication process between client and server

Client communication with server work as follows:

• Create a socket with the socket() system call. The call to the function socket() creates

socket inside the kernel and returns an integer known as socket descriptor.

• Connect the socket to the address of the server using the connect() system call. Connect

operation waiting for successful connection establishment. After successful connection,

the application is allowed to start sending data. The address, which is taken as an

argument, contains the remote participants address.

• Send and receive data via the connection. The server sends the data on client’s socket

through client’s socket descriptor which read by the client by its own socket descriptor.

Server communication with client work as follows:
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• Create a socket with the socket() system call.

• Bind the socket to an address using the bind() system call. This operation assigns a

socket to an address. binds the newly created socket to the specified address. This is

the network address of the server. Address includes IP address, TCP port number of the

server. After bind(), socket can accept connections to other hosts.

• Listen for connections with the listen() system call. This operation prepares the socket

for incoming connections. In listen(), it is define that how many number of pending

connections that can be queued up at any one time on the specified socket.

• Accept a connection with the accept() system call. This works as passive open operation

because it is a blocking the process and wait until a remote participant has established.

• Send and receive data via the connection.
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CHAPTER 6. EVALUATION

6.1 Setup

For the evaluation two virtual machines created in a Dell laptop was used. One virtual

machine configured as server by allocating more resources (memory, storage etc) while the

other virtual machine setup as the client with less resources. The configuration settings are

shown in Table 6.1.

Table 6.1 Experiment testbed

Settings Virtual machine1(client) Virtual machine2 ( server)

Operating System Ubuntu 14.04 LTS Ubuntu 14.04 LTS

CPU 1.8 GHz Intel i5 with 1 processor 1.8 GHz Intel i5 with 1 processor

Storage 20 GB 80 GB

Memory 1GB 4GB

Fuse Version 2.9.3 -

6.2 Access Pattern

In order to prove server cannot distinguish between two quires, results were obtained for

querying same and random item for multiple times. The total number of items are set to N=256.

Both same item and random item were queried for 200,500 and 1000 times respectively. Figure

6.1, 6.2 and 6.3 show how many times each bucket gets accessed in particular layer (bucket

access frequency). The results shows access patterns for querying an item are pretty much the

same.
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Figure 6.1 Bucket access frequency for querying in Layer3 - 1000 times (a) Same item (b)

Random item

Figure 6.2 Bucket access frequency for querying in Layer2 - 500 times (a) Same item (b)

Random item
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Figure 6.3 Bucket access frequency for querying in Layer3 - 200 times (a) Same item (b)

Random item

Table 6.2 and 6.3 shows how many times each layer gets queried for different number of

items (N). This also shows that number of times each layer gets queried is nearly the same for

both the same item and random item cases.
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Table 6.2 Access time for each layer for same item query

query time
layers

2 3 4 5

N=256

200 107 200

500 269 500

1000 554 1000

N=512

200 107 100 200

500 280 274 500

1000 564 555 1000

N=1024

200 116 94 200

500 293 221 500

1000 575 427 1000

N=2048

200 116 87 53 200

500 287 225 254 500

1000 590 478 472 1000

Table 6.3 Access time for each layer for random item query

query time
layers

2 3 4 5

N=256

200 110 200

500 268 500

1000 555 1000

N=512

200 106 99 200

500 281 274 500

1000 564 556 1000

N=1024

200 118 93 200

500 291 218 500

1000 574 427 1000

N=2048

200 115 86 52 200

500 289 223 252 500

1000 589 476 472 1000
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6.3 Overhead

The communication overhead includes both query and shuffling overheads. Results for these

are shown in Table 6.4 and 6.5. According to the results, measured communication overhead

of implementation is consistent with theoretical results.

Table 6.4 Query overhead

N Theory Experiment(100 times) Average items

128 19.65 2284 22.84

256 24 2700 27

512 28.53 3231 32.31

1024 33.22 3724 37.24

2048 38.05 4325 43.25

Table 6.5 Shuffle overhead

N Theory Experiment(shuffle times) Average items

128 962.92 14 1024

256 1536 27 1475.56

512 2310.88 55 1710.74

1024 3321.93 109 3327.10

2048 4604.5 214 3465.60
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CHAPTER 7. CONCLUSION

Cloud base storage popularity has increased in recent past because of its cost effectiveness

compared to traditional storage systems. In this work we implemented a multi user customized

Oblivious RAM (C-ORAM) to efficiently protect users’ data security and privacy in cloud

storage. Data encryption does not fully guarantee the users privacy in cloud environment

because the patterns of data access could leak considerable information about that stored

data.

Oblivious RAM techniques suggested by previous studies as a method of protecting users

access pattern from a curios server. It uses continuous data re-encryption and shuffling in order

to conceal users access pattern. Most of the suggested ORAM schemes assume a single user to

cloud storage. However, in practice it not the case. In C-ORAM we assume mutually trusted

multi user scenario instead of traditional single user.

Evaluation of the system in terms of access pattern preservation and performance shows that

C-ORAM can fully protect users access pattern. C-ORAM needs constant user-side storage

and the overhead results for query and shuffling in the implementation has a closer match to

the theoretical results.
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