IOWA STATE UNIVERSITY

Digital Repository

. . Towa State University Capstones, Theses and
Graduate Theses and Dissertations y-ap v )
Dissertations

2014

Implementation of a multiuser customized

oblivious RAM

Priyangika Rumesh Piyasinghe
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Piyasinghe, Priyangika Rumesh, "Implementation of a multiuser customized oblivious RAM" (2014). Graduate Theses and
Dissertations. 14282.
https://lib.dr.iastate.edu/etd/14282

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital

Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14282?utm_source=lib.dr.iastate.edu%2Fetd%2F14282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Implementation of a multiuser customized oblivious RAM

by

Priyangika Rumesh Piyasinghe

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Wensheng Zhang, Major Professor
Leslie Miller

Ying Cai

Towa State University
Ames, Iowa
2014

Copyright (© Priyangika Rumesh Piyasinghe, 2014. All rights reserved.

www.manharaa.com




ii

DEDICATION

I would like to dedicate this thesis to Dr. Wensheng Zhang without whose support I would
not have been able to complete this work. I would also like to thank my friends and family for

their loving guidance during the writing of this work.

www.manharaa.com




iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . o ittt e e e e e e e e et e e e v
LIST OF FIGURES . . . . . . it e et e e e e e e et e e e e vi
ACKNOWLEDGEMENTS . . . . . . o ittt et et et e et e e e e e viii
ABSTRACT . . . o it e e e e e e e e e e e e e e e e ix
CHAPTER 1. INTRODUCTION . .. . . . ittt ittt ti e e 1
CHAPTER 2. RELATED WORK . . .. ... ... e, 4
2.1 Oblivious RAM . . . . . . . 4
CHAPTER 3. PROBLEM STATEMENT . ... ... ... ..., 6
3.1 System Model . . . . . . . .. 6
3.1.1 Definition of data Item . . . . . . . .. .. ... oL oL 6

3.1.2 Basic functionalities provided by C-ORAM . . .. ... ... ... ... 7

3.2 Threat Model . . . . . . . .. 7
CHAPTER 4. SYSTEM DESIGN . . . . . ... i iiiiii . 9
4.1 OVerview . . . ..o e e e e 9
4.2 System Initialization . . . . . . .. ... L Lo 9
4.3 Data Query . . . . . .. 10
4.4 Data Upload . . . .. . . . . e 11
4.5 Data Shuffling. . . . . . . .. ... 11
CHAPTER 5. IMPLEMENTATION .. ... .. ... ... 14
51 FUSE . . . e 14
5.1.1 FUSE Basic Functions . . . . . . ... ... ... . 15

www.manharaa.com




iv

5.2 Overview of Implementation . . . . . . . . . ... ... ... ... ... ..... 17
5.3 Interaction with the fuse . . . . . . . . .. ... o oo 17
5.4 Data Structures . . . . . . ... 18
B.S QUETY . . oo e 19
5.6 Shuffling . . . . . . . 22
5.7 Sort ..o 24
5.8 Communication . . . . . . . . . L. 26
CHAPTER 6. EVALUATION . . . . . . it ittt it it i e e 28
6.1 Setup . . . . . . e 28
6.2 Access Pattern . . . . . . ... 28
6.3 Overhead . . . . . . . . . . 32
CHAPTER 7. CONCLUSION . . . . . i ittt it i it ittt e e e 33
BIBLIOGRAPHY . . . . ot e e e e e e e e e e 34

www.manharaa.com



LIST OF TABLES

Table 5.1 API Functions . . . . . . . . ... 15
Table 6.1 Experiment testbed . . . . . . ... 28
Table 6.2 Access time for each layer for same item query . . . . . . .. ... ... 31
Table 6.3 Access time for each layer for random item query . . . . ... ... .. 31
Table 6.4 Query overhead . . . . . . . ... 32
Table 6.5 Shuffle overhead . . . . . . . . ... Lo 32

www.manharaa.com




Figure 3.1

Figure 4.1

Figure 4.2

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13

Figure 5.14

Figure 6.1

Figure 6.2

vi

LIST OF FIGURES

C-ORAM Design

Algorithm 1 : Data Shuffling in C-ORAM [Zhang et. al. 7] . . . . . ..

Three phases of operations in C-ORAM [Zhang et. al. 7] . . . . . . ..

Path of a filesystem call [Szeredi et. al. 22] . . . . ... ... ... ...
Implemented model structure . . . . . .. .. ...
Interaction with FUSE by new file system . . . . ... ... ... ...
Data Structures . . . . . . . ..
Function: find_target_bucket_position . . . . . .. .. ... ... ....
Function : query_id . . . . . . ... oo
Function : query . . . ... ..
Function : shuffle . . . . . .. ..o oo
Pair-wise compare and exchange of eight elements . . . . . . ... ...
Intermediate step in Batchers sort of eight elements . . . . . . ... ..
Function : compare . . . . . . . .. ...
Function : merge . . . . . . ...
Function : sort

Communication process between client and server . . . . . . . ... ..

Bucket access frequency for querying in Layer3 - 1000 times (a) Same
item (b) Random item . . . . ... ... ... ... ..

Bucket access frequency for querying in Layer2 - 500 times (a) Same

item (b) Random item

www.manharaa.com



vii

Figure 6.3  Bucket access frequency for querying in Layer3 - 200 times (a) Same

item (b) Random item . . . ... ... ... ... L L. 30

www.manharaa.com




viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with
various aspects of conducting research and the writing of this thesis. First and foremost,
Dr. Wensheng Zhang for his guidance, patience and support throughout this research and
the writing of this thesis. His insights and words of encouragement have often inspired me
and renewed my hopes for completing my graduate education. I would also like to thank my

committee members for their efforts and contributions to this work: Dr. Les Miller and Dr.

Ying Cai.

www.manharaa.com




ix

ABSTRACT

Outsourcing data to cloud storage has become popular. Example systems such as Google
Drive, Amazon S3 and Microsoft Azure are affordable and convenient, and provide scalable
storage space. However, since the data management is left to third party, users no longer
have physical control of their sensitive data, which raises new challenges in terms of data
privacy. Data encryption provides confidentiality, but encryption alone is not enough since
information may be leaked through the pattern in which users access the data. In this thesis, we
implemented a Customized ORAM(C-ORAM) system that allows oblivious access to remotely-
stored data in multi-user scenario. Experiments have shown that C-ORAM can effectively

protect user’s privacy as well as achieve low communication overhead at individual users.
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CHAPTER 1. INTRODUCTION

The popularity of storing data in the “cloud” has increased in recent past because of its
cost effectiveness compared to traditional storage systems. In cloud environment, the clients
pay only for the resources that they use, and they are more reliable due to the redundancy
provided by replications presented in the cloud server. When outsourcing sensitive data such
as financial and health records, it becomes a problem of data privacy as users are giving control
of their data to third party where in this case it is the cloud provider. The primary way to
maintain confidentiality of user’s data is to encrypt them using a key, which is only known to
the particular user. However, data encryption does not fully guarantee the privacy since the
patterns of data access could leak considerable information about the stored data.

From clients’ data access patterns, a server can monitor their queries and perform it’s own
traffic analysis.Remote server can learn the regular accessing patterns of data, and try to relate
it to other client information gained by the third party channels. For example, suppose there
is always certain stock exchange action take place after query sequence of q1, q2 and g3 from
the client. In this case, a curious server can learn about the content of the queries. It can also
predict what will happen next when similar sequence of queries appear, even though the data
that query is encrypted [Pinkas et. al. 1].

Furthermore, it is also possible to analyze the significance of different areas in the storage,
by keeping track of how frequent the same data items access by the client. A malicious server
with substantial but limited power, may try apply it’s resources to decrypt only the data items
which are frequently accessed by the user.

In addition, the server can draw conclusions about associations between queries by consid-
ering the users’ data access patterns. For an example, suppose a company outsources its data

and the employees are accessing those data time to time. By observing and comparing the data
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access patterns of the employees, the storage provider can decide what kind of access policy
that company follows since in general, higher privilege users have access to larger portion of
data than the lower privilege users.

In the context of hiding users’ data access patterns from the curious server, Goldreich and
Ostrovsky introduced Oblivious RAM (ORAM) architecture [2] which uses repeated encryption
and shuffling of outsourced data. The basic idea of hierarchical solution proposed by Ostrovsky
can be stated like this: there are sequences of layers which are filled by the data elements at
each querying process, and smaller layers are shuffled into larger layers as they fill up. It is
required that shuffling also need to be oblivious to the untrusted party. In order to protect
the data content, a private key encryption is used when the retrived elements are written back
to untrusted RAM. After that, many ORAM constructions have been proposed to protect
the users’ data access patterns privacy with some restrictions [2-6]. One of the fundamental
restrictions in most of such ORAMs, is the assumption of single user access to the remote
storage. However, in reality there can be multiple users who access to the remote storage
simultaneously.

In C-ORAM proposed by Zhang et. al. [7] there are two entities in client side:multiple
users who trust each other, and shared agent. In general we can assume they belong to same
organization. C-ORAM support two kind of operations, data query and data shuffling. Query-
ing a data item from remote storage is done by the users while shuffling done by the shared
agent.The motivation to develope a system like this is to detach the overhead incured in shuffling
phase from the client.The efficiency of an ORAM is measured by amount of local storage, and
amount of communication overhead for querying and the shuffling. Compared to the single-
user ORAM with the best-known performance [6] C-ORAM archive a lower communication
overhead per query by the user O(logNloglogN), a higher communication overhead for data
shuffling O(log® NloglogN) which is handled by shared agent, and a moderately increased local
cache at the user O(logN log logN).

In this study, we implement C-ORAM which works with a FUSE-based distributed file
system. Experimental results show that users access pattern can be preserved in that there

is no difference between querying one same element and randomly picked element for multiple
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times. The overhead results for querying and shuffling measured from the evaluation process
have close match to the theoretical results.

The rest of this thesis is organized as follows: In Chapter 2, related works are presented.
Chapter 3 outlines the problem statement in more detailed. Chapter 4 describes the design of
C-ORAM scheme and Chapter 5 includes the detailed implementation of C-ORAM. Chapter 6
includes the results of evaluation and discussion. Finally, Chapter 7 concludes the thesis with

some future work suggestions.
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CHAPTER 2. RELATED WORK

2.1 Oblivious RAM

Oblivious RAM was first examined as theoretical method by Goldreich and Ostrovsky
[8,9,10] for protecting a software from piracy. In that context the processor is trusted while the
memory is not. Goldreich and Ostrovsky in [9] prove that oblivious RAM (ORAM) simulation
using an outsourced data requires an overhead of at least logN, for a RAM memory of size N.
When client side has only a constant size storage, they show how client capable of achieving
an overhead of O(v/NlogN), using a scheme called the “square-root” solution, and with O(N)
storage at server. After that with a more complex scheme, they also show how client capable
of achieving an overhead of O(log?N) with O(NlogN) storage at the server, using a scheme
called the “hierarchical” solution. Apart from suggesting a hierarchical solution with O(log®>N)
amortized cost, Goldreich and Ostrovsky [9] also proposed an ORAM scheme with lower bound
amortized cost for client at least O(logN) (for ORAM capacity of N). In 2010, Beame and
Machmouchi [11] improved the lower bound to O(logNloglogN).

The application of above mentioned ORAM solutions were not that straight forward. Be-
cause those approaches contain several complications and hidden constant factors that make
these solutions not practical for real-world use in the context of privacy protection in outsourced
data management. Some other works have been done base on Goldreich and Ostrovsky hier-
archical solution which can be denoted as index based and hash based ORAM schemes by
considering their lookup mechanisms.

As an index based ORAM, Stefanov et al. [12] proposed an ORAM scheme which has
reduced worst-case bound for data access. Because of the lower overhead than theoretical

ORAMs this is more suitable for real world application. With the ORAM scheme they show
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that client can achieve an amortized overhead of O(logn) and worst-case performance O(v/N),
with O(eN) storage on the client, for a constant 0 < e < 1. It is also able to achieve amortized
overhead of O(logN) and similar worst-case performance, with a client side storage of O(v/N).
The scheme of [13] provides a tree-based construction that uses poly-logarithmic O(NlogN)
server storage and incurs O(log?N) overhead on each access when the client has access to
O(v/'N) local storage.

Another index based ORAM (Path-ORAM)[14] proposed makes O(logN) accesses to the
server. It is performance wise better than all other ORAMs which are index based. It uses
a position map and stash which are both stored at the client side. The size of position map
used is n while the position map is size of log(N). With O(logN) client side Path-ORAM
achieves O(log?N) amortized overhead. The oblivious simulations described above consider a
single-client scenario where all accesses, including read-only accesses, are processed sequentially.
Extending these solutions to support parallel access is important if we consider multi user
scenario. The works of Stefanov and Shi [15] and Williams et al. [16] allow parallel access.
The clients access oblivious storage of [15] via a load balancer that is responsible for scheduling
client requests.

As a hash based ORAM, Williams and Sion[17] proposed one with a constant overhead by
using computation power of the server. With O(\/N ) client side storage they achieved an ex-
pected amortized time overhead of O(log? N). Williams and Sion propose another construction
with O(vV/N) client-side storage, that achieves O(logNloglogN) amortized cost [18].Pinkas and
Reinman proposed a hash based ORAM [1] construction that achieves O(logN?) overhead with
O(1) client-side storage.Goodrich and Mitzenmacher [19] show that overhead of O(log?N) in
an ORAM simulation can be achieved , with high probability, for a client with constant sized
local memory, and O(logN), for a client with O(N€) memory, for a constant € > 0. Kushilevitz
et al. [20] also show that one can achieve an overhead of O(log?N/loglogN) in an ORAM

simulation, with high probability, for a client with constant-sized local memory.
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CHAPTER 3. PROBLEM STATEMENT

3.1 System Model

As shown in Figure 3.1, multiple users, who trust each other, share N data items, which are
exported to an un-trusted remote storage server. The users share a trusted local agent, which
has limited storage resources(Figure 3.1). The ORAM system involves two types of operations:
data query and data shuffling. A user can query the remote storage server by sending requests
directly to the server and processing replies from the server; the shared agent can perform data

shuffling for the users.

$& w4

EI! € >
% > _
___g @ Remaote Server

Client Side

Figure 3.1 C-ORAM Design

3.1.1 Definition of data Item

Let Fp be a finite field of p distinct elements, where p is a large prime number. Let Gp be
a multiplicative, cyclic group with also p distinct elements. Hence, for any element g € Gp,
elements ¢°, g, g%, ..., g? ! should all belong to G.

Each data item, denoted as Di, consists of two components: a unique data ID and the

data content that is a sequence of elements of Gp. As the operations on each element of the
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sequence are the same, we focus our study on the operations on a single element in this work.
In practice, operations on a realistic data content are simply a sequence of operations on each
element of the data content.

For the rest of this work, each data item Di is represented as (gi, di), where gi € Gp is the

data ID and di € Gp is the data content.

3.1.2 Basic functionalities provided by C-ORAM
From the viewpoint of client side:
e read(data,pos) to read data at physical address pos.

e write(data, pos) to write data from physical address pos.

From the viewpoint of server side:

e store(data, pos) to store data at physical address pos(write).

e fetch(pos) to retrieve data from physical address pos(read).

3.2 Threat Model

In the threat model several assumptions are made. First, the users are trusted. The
keys, used for encryption, exchange between the users are considered to be secure. Second,
communication channel between users and the server is secure. Techniques such as SSL [Freier
et al 21| can effectively achieve this. Third, the server is assumed to be curious but not
malicious. That means server do whatever the operations mentioned in 3.1 correctly on behalf
of the client, but at the same time it may try to figure out the pattern in which client access
the data. This work follows standard security definition of ORAM scheme. According to the
definition, ORAM system is considered secure if the server cannot pick up anything about the

user’s data access pattern which is formally defined in[12] as:
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Definition: Let ¥ := ((op1, u1,datay), (op2, ug, datas), ..., (opar, uns, datays)) denote a data
request sequence of length M, where each op; denotes a read(u;) or a write(u;; data) operation.
Specifically, u; denotes the identifier of the block being read or written, and datai denotes the
data being written. Let A(Y) denote the (possibly randomized) sequence of accesses to the
remote storage given the sequence of data requests 3. An O-RAM construction is said to be
secure if for any two data request sequences ¥ and 7 of the same length, their access patterns

A(Y) and A(7Z) are computationally indistinguishable by anyone but the client.
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CHAPTER 4. SYSTEM DESIGN

4.1 Overview

C-ORAM differs from previously introduced bucket ORAM schemes mainly due to the
way how it selects the buckets. A hash function associated with each layer select two possible
locations for a given data item. The “locate” operation of data item into bucket is probabilistic,
which means data items are always inserted into the bucket with less number of items. This
guarantees there is less chance in overflowing a bucket. Following sections present system
initialization, data query, uploading and shuffling which are the three phases of operations in

C-ORAM(Figure 4.2)

4.2 System Initialization

C-ORAM organizes the storage as a hierarchy of buckets with the following properties;

T + 1 layers, where T = [logN — log(logNloglogN)] — 1.

#; buckets in each layer, where ¢; = 2t1logNloglogN. Bottom layer of the hierarchy

(LayerT') with at least N buckets.

e Public hash function H; for each layer, which maps each element of group G, to two

integers uniformly at random between 0 and ¢;_1.

e 4loglogN data items in each bucket.

A counter, which keep track of the elements in each bucket.
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At system initialization, the user is preloaded with two keys x(l) and y(l) for each layer .
x(1) is for encrypting data id; y(l) is for encrypting data content. Initially, the user encrypts
and exports all N data items to the bottom layer (T) of storage hierarchy at storage server. It

@) (@)

is done by computing gf for each data item i and exporting to one of the two buckets

generated by the hash function associated with layer T.

4.3 Data Query

To query a data item, C-ORAM executes the data query phase in iterations for each each
nonempty layerl of the storage hierarchy from the top layerl = 0 to the bottom layer [ = T.

To query an item D; = (g;, d;) iteration of 6 steps are carried out.

e Stepl: The user computes the encrypted ID gf ®

e Step2: The user computes the positions posO and posl of the buckets that may contain

the desired data item (pos0, posl) Hl(gf(l))

e Step3d: The user retrieve bitmap of the layers which indicate whether a bucket is empty
or not. If the position need to query is empty, user pick non-empty bucket from that

layer.

e Stepd: Bucket request. If the bucket D; has already been found at a layer higher than
L,then from following layers user randomly picks a nonempty positions. Otherwise user

picks two non-empty buckets that computed from hash function.

e Stepb: Storage server returns all the encrypted data items at the requested buckets

directly to the user.

e Step6: User uses keys z(l) and y(1) to decrypt ID and content of return data. If desired
item found, perform necessary action to the data content; otherwise, the data item is

stored temporarily in a local cache at the user.
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4.4 Data Upload

After all nonempty layers have been queried and the desired data item has been accessed,
all the returned data items are re-encrypted and then uploaded to the storage server. The
user picks a new pair of keys z(l) and y(I) randomly and re-encrypts each returned data item
with these keys. Then, the re-encrypted data items are uploaded in an arbitrary order to a

temporary shuffling buffer at the storage server.

4.5 Data Shuffling

Data shuffling is done as shown in Figure 4.1.

Algorithm 1 Data Shufling in C-ORAM
S1: Determine Shuffling layver
t-=0
=515,
while ¢ < |5] do
=81 S[+1
N b=1+1
end while
1, =1
S2: Data Encryption
g for I, e S do
o nser. Download( S, 1)

i LA — s TG ol !J!I_d:_l
10 Dy := 11.~.Lr.']‘1n,|1tgfur11|(ﬂ,, ORET )

113 EL (D)) := user.Encrypt( D}, u)
12: user.Upload(S, E,{D}))
13 end for
83: Data Sorting
14 nser, Oblivionsly-Sort| )
S4: Data Decryption
15: for I € § do
16: user.Download( S, E, (D))
17 1 = nser.Decrypt{ O, w)
18 user.Upload( s, 1))
19 end for
55: Server Locates Data into Buckets
20: Server.Map(l,, §)

&

Figure 4.1 Algorithm 1 : Data Shuffling in C-ORAM [Zhang et. al. 7]

[S1] Determine the layer for shuffling. As a rule, shuffling should be performed for layer

www.manharaa.com




12

ls > 0 only if

(i) the number of data items in the shuffling buffer and at layers 0, ..., [ is greater than
or equal to the total number of buckets at layer I,_1, and

(ii) the number of data items in the shuffling buffer and at layers 0, ...,[5 is less than the

total number of buckets at layer [s.

[S2] All data items at layers 0, ...,ls update such that the ID of each data item becomes
encrypted by z(ls) and the content of each data item becomes encrypted by y(ls).

First download all data items, encrypt with users private key and upload the new items

back to shuffling buffer. The new data items will be as [D} = (g; 0, df(l))]

[S3] For the |S| data items stored on the shuffling buffer, the user performs data-oblivious

sorting, based on the new data ID.

[S4] After the end of data shuffling, the user further scans all data in the data buffer to

remove the private-key encryption.

[S5] Storage server moves the data items at the shuffling buffer to the buckets at layer I

using logN random hash functions H, fs (gf(ls)) where fe {1, ...,logN}.
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_ User Server
E lﬂflfy“ﬂl
g
2 | 2 |[@::fposs, pos) =HIE(1D) |
i
; H r @, : Bitmap Retrieval :
g, @, : Buchet QGuery N
s >
R T T e IR g e
] : Q, : E, ( data )
i|i4F
§ | @, : Obtain desired data |
g
£ U:E, ( data) 3
: >
| Select the layer to be shuffled |
E Shuffle the selected layer ;

Figure 4.2 Three phases of operations in C-ORAM [Zhang et. al. 7]
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CHAPTER 5. IMPLEMENTATION

We implemented the C-ORAM in a user-space distributed file system. With the distributed
file system, we can make it easy for users to access and manage files which are physically
distributed across various areas of the disk, or across a network which may be multiple disks

or multiple computer systems.

5.1 FUSE

Our user-space distributed system is built based on FUSE(File System in User Space).
FUSE is an operating system mechanism for Unix-like computer operating systems that lets
non-privileged users create their own file systems without editing kernel code. This is achieved

by running file system code in user space while the FUSE module provides a “bridge” to the

Kemel

actual kernel interfaces.

Figure 5.1 Path of a filesystem call [Szeredi et. al. 22]

more uniform API function to interact with file system (Table 5.1).Be-
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cause of the file system is running in the user space it is easy to debug and failures will not

result in crashing the machine like kernel space file systems.

Table 5.1 API Functions

filel directory
create mknod mkdir
remove unlink rmdir
read read readdir
write write
misc open, truncate

5.1.1 FUSE Basic Functions

According to FUSE documentation [23], many FUSE functions provide two ways to identify
the file being operated. The default option that always available is the “path” argument,
which is the full pathname (relative to the file system root) of the file in request. However,
due to the expensiveness of pathname lookup, FUSE sometimes provides “file handle” in the
“fuse_file_info” structure as alternative option.

When using FUSE to implement a new file system, the first step is to set the fields in
open, create, and opendir functions so that the other functions can use them. Although, the
file handle in new FUSE file system implementation is a pointer to a useful data structure,
it can be used as either an index into an array or a hash key, or anything else that is useful.
Following functions are some of the key function need to be modified when implementing a new

file system using FUSE.

getattr(constchar * path, structstat x stbuf)

This function gets called every time whether the operation is for directory or a file. Therefore
it needs to be implemented first. For the given pathname, this fills in the elements of the “stat”

structure.

readdir(constcharspath, void«buf, fuse_fill _dir_t filler,of f tof fset, struct fuse_file_in fox
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FUSE provides a mechanism to store the entries in a directory structure and the basic
mechanism is the creation of data and calling a FUSE-supplied function to place it back in the
structure.

The filter() is one of the function called by the readdir(). The goal of this function is to
insert directory entries into the directory structure which is called as bu f. filler(). The function
prototype is given as:

int fuse_fill_dir_t(void x bu f, constchar x name, conststructstat x stbuf,of f tof f);

It is important to note that the readdir() uses filler() in a simple way as possible to just

copy the related directorys filename into the mounted directory.

open(constchar x path, struct fuse_file_info * fi)

This uses to open a file. To handle the files need to allocate any necessary structures need
to set the path using fi—th which is described as absolute path above. Moreover, fi includes

some additional fields that might be useful to an advanced files system.

read(constchar x path, char x buf, size_tsize,of f tof fset, struct fuse_file_info * fi)

This function first fill the buffer buf with the size(in bytes) of the given files and the
beginning of offset(in bytes) to the file. Then, it returns either the number of bytes being
transferred or 0 if the offset was at/beyond the end of the file. This function is required for

any kind of filesystem as reading and writing are essential file opearations.

release(constchar * path, struct fuse_file_info  fi)

After FUSE completed all the operations with the given file, the function release() is called
in order to free any temporarily allocated data structures. There exists one release per open.
Therefore, if some function carried out at the open time of the file, by the release time, operation
needs to be completed.

By default, FUSE is multithreaded. That is useful when there are multiple clients like
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in our ORAM scheme.Multithreading lets one client to proceed even if other client stop the
communication. However there are also drawbacks of this.One is, it introduces the possibility

of race conditions. Also it makes debugging harder.

5.2 Overview of Implementation

To implement single virtual user (client) and remote storage (server) socket program which
communication over the network in TCP/IP model is used (Figure 5.2). When system starts

single connection between client and server establish and stay as long as client disconnect from

the system.
Client side Server side
File System Interface o
FUSE
C-ORAM
Calling API Server
functions (Traditional
Storage
Server)
C-ORAM Client Commumeation
{(Implemented File Vi socket i i
System) =2 s

Figure 5.2 Implemented model structure

Following sections talks about the interaction with fuse, data structures used, querying,

shuffling and the communication between client and the storage.

5.3 Interaction with the fuse

Modifications to basic functions of FUSE mentioned in section 5.1 are done in the imple-
mentation in order to carry out the query process of the C-ORAM scheme. Query process
get executed at the cus_open() shown in Figure 5.3 which eventually result in shuffling process

mentioned in the latter part of this section.
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readdin) opend) read() releasel) F———
l FUSE
W W
cus_readdir) cus_open() i cus read() cus_releasel) B

Implemented File System

Figure 5.3 Interaction with FUSE by new file system

5.4 Data Structures

According to design, data items fall into buckets generated by hash function and there is a
limit of items IDs that a bucket can hold. To facilitate this architecture layers implemented as
linked list of buckets nodes (Bucket) and for each layer starting bucket and number of buckets

stored at a separate structure called Layer.

ty proeclel struct Bocket

int index

int item® /4 array to held itemlDst
int iteinoconnt

struet Bucket *next

ekt

Lty poedel struct Laver

Tancket, =1
it o bucket
Hayer

Figure 5.4 Data Structures

In order to find particular data ID falls into which bucket MD5 hash function is used as
shown in Figure 5.5. The encryption and decryption operations used in the implementation,

all are integer operations which are described by the system design in the chapter 3.
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Function find target bucket_poaition

begin

Input  ercrypd 00 Encrvpted datn 1D feyer _bucket s_count:
Number of buckets in the baver

Output: buckel_position: Taroet bocket position

bae f fer o 1D charsetor array Lo store eneryplod data 15
digest o LI cliaracter array to store hashod S f Fer

/¢ Generate hashed buffrr and store in digest
Clopy encrevptoed data [ to bhatfor

Dreclare and initialiee MG strocoore

Update the b fer to be hashed

Store hashod b f fer to digest

/7 Procese digest to get the target bucket position
Convert diges! to 125 bit hash valne aed Sieing

Roeprosent mdSEring ae four 32 bits intesers o1, 02, o3, o4

Perform NOR operation on o1, 02, 03, od to prodnee single inteser
Trarsle

trichect_position @ hoash mod fager freckets_cound

end

Figure 5.5 Function: find_target_bucket_position

5.5 Query

In the implementation query function is called at fuse open file command. Then from each
layer buckets are queried. If the condition for shuffling is triggered at data uploading then
shuffling is done which include downloading data from layers, re-encryption, oblivious sort and
upload back to targeted layer. All these operations carried out via the socket established at
the beginning of fuse execution.

Query function consists of downloading all buckets from layer0 and downloading two bucket
from each non empty subsequent layers which generated by our hash function associated with
each layer. data_id takes as the input to the query function. To download all the items in
particular layer, first ids stored at that layer need to be find. For that down_layer function is
called by passing starting bucket of that layer. This function stores all ids (which are references
to actual files) to an array and return to query function. Then query function will query one

by one id from remote storage.
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Function query_id

bepin

Input : dafe_éd: Datn ID to he gquericd @ fayer_array @ Pointer
to the Iaver array 3 feger e 0 Laver munber ;
lager_key @ Laver x-kev ; bucket dd_arvay @ Poinler to
atore data [De of selected bucket

Ountput: becket dd_oreay @ Resalted array of data T in selected
bkt

#f Find encrypted data ID

encrypbed_id - r!‘m‘a_-ir.if'!rrye'i'_kﬁy

layer oot _cound @ Number of huckets in dager
fuecdeet_position @ find_target_bocket_position] e ceypdea_id |
fovgrer _trnefeet _cenl)

layer_num_start © Starting bucket of the layer

lagrer e ray[lager _rown] buelel_fourd @

auery _bmicket (fryer_nm_stert biocket_position )

buckef _id_count 1 Data I connt of ucket _found

FTE bucket_found is empty, select randoem bucket

if Bieeleef Zod_count = 0 then

while bucbel _id_cownt = 0 do
bucket_found : NULL
treeckel_position @ Random number fron 1oto
lager_bucket _coundt — 1 nsing Bitmap
buecket_founed :
ey _bncket (Ergev_rewre_stord nnekeed _position)
beecdeet id_cound @ Data 1D connt of fecket - found

el

el

S/ Store selected bucket in giuewue

for i +— b to buclef _id_cownt do

| Auldd ith data ID to becket_ad_array

ened

Raocuest server Lo romove Suelef - Forered fromm i0s” position

Baecheed _posilion

end

Figure 5.6 Function : query_-id

To query all the items in one of the two positions generated by hash function query_id
function is used. If particular bucket selected in a layer is empty then random bucket queried
from that layer. This function takes zkey associated with layer in addition to id in order to
compute bucket position by calling find_target_bucket_position. This also returns all ids as
array to query function which eventually gets queried from remote storage. After querying ids

on bucket, that bucket needs to be emptied.
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Function gquery Cinf id)

begin
Input : dafeid @ Data D
Chubput:

leyer_array @ [leyer 0 tayer_ 1, . lagerd, o lager L)
bucket_pointer ; Starting lucket of the leger array[0]
dovrpdomd e [ fer 1 Empty baffer
dovwenlayver(bucket_pointer download S f fer) // Downlead data
IDe in leyer_array(l]
for coch id in dowsedood b f fer do

Reguest item dtee with id from the server

Re-encrypt dfm using temporary key

Uplond the it back to slmfHing baffer
end

for loy +— 1 to L do
Lagrer odadbad D) _conent 0 Current mnnber of data 1D in

layer_array|lay]

if fager_dotal D _count 2 0 then

whey[lay] @ x-ley of lay

trecdet _id_orvay 0 Empty array to store selected bocket

#f Belect bucket at pos0

ouery _id{data_dd loyer_array day aoloy[lay] Suckel d_array)

for each id in buckef d_arrey do
Reguest item dtre with ad froon the server
Be-encrvpt éfm using temporary key
Upload the it back to shatfing baffer

end

#f Belect bucket at posl

uery _id{item_id +

Ldegrer orrayg o akeylay] bicket Zid _avray)

for cach id in bucket id_array do
Request item it with éd from the server
Re-enerypt dle using temporary key
Uplosaad thee itee hack to shoaffling bafler

el

encl

el

end

Figure 5.7 Function : query
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5.6 Shuffling

Shuffling consist of several steps as shown in shuffling Algorithm1. At the time of data
uploading, if total of items in shuffling buffer and layer0 exceeds number of buckets in layer(
shuffling is triggered. It is done by keeping track of the number of element get queried at query
phase and compare it with number of buckets at layer0 for given V.

If shuffling is needed, next step is finding to which layer shuffled data can be inserted. For
that each layers item count is taken and check whether it can hold all items from layers above
that (including the items in shuffling buffer). After that downloading and uploading take place
via the socket connection established at the beginning. During the process re-encryption and

sorting take place in order to make shuffling oblivious to storage server.
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Function shuffle

brezin
Input sl f fle o f ferstem_cound 0 Number of items in shaifle
buter
Cutput;

tager_arvay @ [layer O layer L, L logersi, o lager L)

/¢ Downleoad data IDs and corresponding iteme up to
ehuffling layer, re-encrypt items and upload them to
shuffling buffer
for loy +— 1 to L do
lagper i _cownt 3 Number of data IDs in lavers foger_nrray]1]
to lagyer _rray|bay)
lager bucket _count © Number of buckets in feyeroerraylay)
total _id_count © {oger_dd_cound + sl f fle_buf ferifem_cound
if | Fotal_id_couwnt < loyer_bucket_cownt | W
Lagrer_arvaylay] = leger_areay[L] then
for i +— 1 to loy do

/¢ download data IDs from lager_orroay[d]
buclel_pointer @ Starting bucket of the layer_erray[lay)
deowrdl ond _bu f fer @ Empty baifer
down laver{bech et _poinfer download b f fer)
for each id e downloocd b f fer do

Request e it witle &d Prom the server
Re-enerypt it using temporary key
Upload the ifs back to shnfling bhoafer
end
ol
Empty layers fager_arvay[1] to lager_avray|lagy)
Break the loop
end
end
£f Receive itemz from shuffling buffer in pairwisze,
sort them and uplead to shuffling buffer
for i +— 0 to shif flebaf feritem _count do
Rteceive pair of items i_pede from shufling baffer
Sort d_pwrie
Upload d_pede to shatfing baffer

ol

/¢ Azaign new randem x-keys for each resulted empty
layers before shuffled layer
for j + 0 to fay do

Empty tayer_arrayl il
Assign new randomn x-lkevs, v-key for leyer _aveay[i]
el
A Re—enerypt items using new x-keys, y-hey
for &« 0 to sba e ta f fer_item_cownt do
Lteceive keh item ifm_k frdm shaffling butter
He-encrypt itk nsing new x-kevs, yv-key of fayer_erray[lay)
Uploael the et fe bacl to shuffiing baffer

endd

end

Figure 5.8 Function : shuffle
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5.7 Sort

For oblivious sort considering limited client space available batchers sort is used. Figure

5.9 shows how pair wise compare and exchange works in batchers sort for 8 elements.

e Il o | |
cocll—all.] l
ol ‘ L ‘ l
ol |

Figure 5.9 Pair-wise compare and exchange of eight elements

By comparing odd and even positions in the list that need to be sorted, batchers sort makes
half of elements in list to be in ascending order while rest of the elements in descending order
as shown in example in Figure 5.10.

3 &6 & @9 7 4 2 1

Shabta ol oo

34‘21?5‘39

2|1 | 3|4 |7 5|89

el A0l Vg

1 2 3 4 § T 8 9
Sorted list

Figure 5.10 Intermediate step in Batchers sort of eight elements

Then compare-and-exchange moves smaller numbers of each pair to left and larger numbers
of pair to right recursively to get the sorted list. Implementation of batchers sort algorithm
is shown in following Figures 5.11, 5.12 and 5.13 as a whole. From the algorithm comparison

part is carried by the client side.
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Funection compare

hegin

Input . integeroreay: Pointer o an interger array; @ 0 Index of
the frst element: § ¢ Indext of the seeond element:
divection @ Ascending or descencding

Output: None

if direcltion = (integer_arrayli] = integer_arvay(i]) then

1 Switch elements fnfeger_arvay(i] and dnteger_erray[i]
end
end

Figure 5.11 Function : compare

Function merge
begin
input : infeger_array: Pointer o an interger array @ low_dfnder
Lowest index @ arreg_cet @ Number of elements in the
integer_array § diveclzon @ Ascending or descending
output: None
if areay_cnt = [ then
k array.ent [ 2
for i + low_tndexr to low_inder + & do
compare(integer_array. 1, 1 + b, divection)
mersel integer_arvay low_indes, bodivection)
merselinteger_array fow dnder + k. k. direction)
end
e
end

Figure 5.12 Function : merge

Function sert

bhegin

input ; integer_areaey: Pointer o an interger array 5 fowandea
Lowest index | aveayoend 1 Number of elements in che
itegerarray - direction o Ascending or descending

output; MNope

il array_cnt = ! then

ko oarragent 2

sort{integer_aveay, Fow_indee. k. 1) // Sort in ascending
order

sort{integer_aveey, fow_inder + &, k0] /F Sort in
deacending order

merse( fnteger_array, low nder. arvvay_ent, divection)
endd
end

Figure 5.13 Function : sort
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5.8 Communication

Communication process between client and server take place is shown Figure 5.14. Here
read() and write() operations are receiving and sending out the items between client and server.
In the implementation single thread is used assuming communication is serialized which mean
at a given time only one of sending or receiving operations will happen. The connection

established by the client with the server eventually ends when client close the connection.

Server

Figure 5.14 Communication process between client and server

Client communication with server work as follows:

e Create a socket with the socket() system call. The call to the function socket() creates

socket inside the kernel and returns an integer known as socket descriptor.

e Connect the socket to the address of the server using the connect() system call. Connect
operation waiting for successful connection establishment. After successful connection,
the application is allowed to start sending data. The address, which is taken as an

argument, contains the remote participants address.

e Send and receive data via the connection. The server sends the data on client’s socket

through client’s socket descriptor which read by the client by its own socket descriptor.

ith client work as follows:
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e Create a socket with the socket() system call.

e Bind the socket to an address using the bind() system call. This operation assigns a
socket to an address. binds the newly created socket to the specified address. This is
the network address of the server. Address includes IP address, TCP port number of the

server. After bind(), socket can accept connections to other hosts.

e Listen for connections with the listen() system call. This operation prepares the socket
for incoming connections. In listen(), it is define that how many number of pending

connections that can be queued up at any one time on the specified socket.

e Accept a connection with the accept() system call. This works as passive open operation

because it is a blocking the process and wait until a remote participant has established.

e Send and receive data via the connection.
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CHAPTER 6. EVALUATION

6.1 Setup

For the evaluation two virtual machines created in a Dell laptop was used. One virtual
machine configured as server by allocating more resources (memory, storage etc) while the
other virtual machine setup as the client with less resources. The configuration settings are

shown in Table 6.1.

Table 6.1 Experiment testbed

Settings

Virtual machinel(client)

Virtual machine2 ( server)

Operating System

Ubuntu 14.04 LTS

Ubuntu 14.04 LTS

CPU

1.8 GHz Intel i5 with 1 processor

1.8 GHz Intel i5 with 1 processor

Storage 20 GB 80 GB
Memory 1GB 4GB
Fuse Version 2.9.3 -

6.2 Access Pattern

In order to prove server cannot distinguish between two quires, results were obtained for
querying same and random item for multiple times. The total number of items are set to N=256.
Both same item and random item were queried for 200,500 and 1000 times respectively. Figure
6.1, 6.2 and 6.3 show how many times each bucket gets accessed in particular layer (bucket

access frequency). The results shows access patterns for querying an item are pretty much the

same.
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Figure 6.1 Bucket access frequency for querying in Layer3 - 1000 times (a) Same item (b)
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Figure 6.2 Bucket access frequency for querying in Layer2 - 500 times (a) Same item (b)
Random item
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Figure 6.3 Bucket access frequency for querying in Layer3 - 200 times (a) Same item (b)

Random item

Table 6.2 and 6.3 shows how many times each layer gets queried for different number of

items (N). This also shows that number of times each layer gets queried is nearly the same for

both the same item and random item cases.
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Table 6.2 Access time for each layer for same item query

| query time | layers |

| (2] 3 | 4[5 |
| | 200 | 107 200 | | |
| N=2560 500 269 500 | ||
| | 1000 | 554 | 1000 | | |
| | 200 | 107 | 100 | 200 | |
| N=S120 500 280 274 | 500 ||
| | 1000 | 564 | 555 | 1000 | |
| | 200 | 116 ] 94 | 200 | |
| N=1024 500 203 221 | 500 ||
| | 1000 | 575 | 427 | 1000 | |
| | 200 | 116] 87 | 53 | 200 |
| N=2048 500|287 225 | 254 | 500 |
| | 1000 | 590 | 478 | 472 | 1000 |

Table 6.3 Access time for each layer for random item query

| query time | layers |

| (2 [ 8 [ a5
| | 200 | 110 200 | | |
| N=256 500 |268] 500 | | |
| | 1000 | 555 | 1000 | | |
| | 200 | 106 | 99 | 200 | |
| N=LZ s00 281 274 | 500 ||
| | 1000 | 564 | 556 | 1000 | |
| | 200 | 118 ] 93 | 200 | |
| N=1024 500 201 ] 218 | 500 ||
| | 1000 | 574 | 427 | 1000 | |
| | 200 | 115] 86 | 52 | 200 |
| N=2048 500 289 | 223 | 252 | 500 |
| | 1000 | 589 | 476 | 472 | 1000 |
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6.3 Overhead

The communication overhead includes both query and shuffling overheads. Results for these

are shown in Table 6.4 and 6.5. According to the results, measured communication overhead

of implementation is consistent with theoretical results.

Table 6.4 Query overhead

N | Theory | Experiment(100 times) | Average items

128 19.65 2284 22.84

256 24 2700 27

512 28.53 3231 32.31

1024 33.22 3724 37.24
2048 | 38.05 4325 43.25

Table 6.5 Shuflle overhead

N | Theory | Experiment(shuffle times) | Average items
128 962.92 14 1024
256 1536 27 1475.56
512 | 2310.88 55 1710.74
1024 | 3321.93 109 3327.10
2048 | 4604.5 214 3465.60
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CHAPTER 7. CONCLUSION

Cloud base storage popularity has increased in recent past because of its cost effectiveness
compared to traditional storage systems. In this work we implemented a multi user customized
Oblivious RAM (C-ORAM) to efficiently protect users’ data security and privacy in cloud
storage. Data encryption does not fully guarantee the users privacy in cloud environment
because the patterns of data access could leak considerable information about that stored
data.

Oblivious RAM techniques suggested by previous studies as a method of protecting users
access pattern from a curios server. It uses continuous data re-encryption and shuffling in order
to conceal users access pattern. Most of the suggested ORAM schemes assume a single user to
cloud storage. However, in practice it not the case. In C-ORAM we assume mutually trusted
multi user scenario instead of traditional single user.

Evaluation of the system in terms of access pattern preservation and performance shows that
C-ORAM can fully protect users access pattern. C-ORAM needs constant user-side storage

and the overhead results for query and shuffling in the implementation has a closer match to

the theoretical results.
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